Compound Interest: interest received on a specific amount of money in a bank account over a set amount of time

A = Account Balance after t years

P = Beginning Principal

r = APR (Annual Percentage Rate)

n = number of times compounded per year

t = number of years

Formula for Simple Compound Interest:

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Examples:

1. Determine the amount of money in a money market account providing an annual rate of 5% compounded daily if Marcus invested \$2000 and left it in the account for 7 years. How much interest will he have earned?

$$A = P(1 + \frac{1}{5})^{nt}$$

$$A = 2000(1 + \frac{05}{365})^{365.7}$$

$$A = \frac{1}{365}^{365.7}$$

$$A = \frac{1}{365}^{$$

2. How much should Sabrina invest now in a money market account if she wishes to have \$9000 in the account at the end of 10 years, with an interest rate of 6% compounded quarterly?

$$A = P(1 + f)^{nt}$$

$$9000 = P(1 + \frac{90}{4})^{4.10}$$

$$P = 4961.36$$

- Some banks offer accounts that compound the interest continuously instead of a set amount of times.

Here is the formula for Continuous Compound Interest:

$$A = Pe^{rt}$$

Example:

On the day of a child's birth, a deposit of \$25,000 is made in a trust fund that pays 8.25% interest. Determine the balance in this account on the child's 26th birthday if the interest is compounded:

- a. Quarterly
- b. Monthly
- c. Continuously

a)
$$A = P(1 + \frac{1}{12})^{12-36}$$

A= $25,000(1 + \frac{0825}{4})^{4-36}$

Example:

Let Q represent the mass of radium whose half-life is 1620 years. The quantity of radium present after t years is given by $Q = 16 \left(\frac{1}{2}\right)^{\frac{t}{2}/620}$.

a. Sketch the graph of the function over the interval from t = 0 to t = 5000.

b. Determine the initial quantity.

c. Determine the quantity present after 1000 years.

$$Q = 16(\frac{1}{2})^{1000} - 10.43$$